
TinySDN: Enabling TinyOS to Software-Defined Wireless
Sensor Networks

Bruno T. de Oliveira1, Cı́ntia B. Margi1

1Escola Politécnica – Universidade de São Paulo
Departamento de Engenharia de Computação e Sistemas Digitais

{brunotrevizan,cintia}@usp.br

Abstract. Software-Defined Networking (SDN) has been envisioned as a way
to reduce the complexity of network configuration and management, enabling
innovation in production networks. While the first SDN approaches focused on
wired networks, there were proposals specifically for Wireless Sensor Networks,
but none of them targeted the TinyOS environment. This paper presents the
TinySDN tool, a TinyOS-based Software-Defined Networking implementation.
It comprises two main components: the SDN-enabled sensor node, which has
an SDN switch and an SDN end-user device, and the SDN controller node, where
the control plane is programmed. The SDN features have been implemented and
tested in a real mote, and will be shown in the demo proposed.

1. Introduction
Wireless Sensor Networks (WSN) have been used to support several different applica-
tions, mainly related to monitoring and detection. Nodes in a WSN are typically battery-
powered and resource constrained (i.e. limited amount of memory, processing and com-
munication), and communicate through a multihop ad hoc network [Culler et al. 2004].

Software-Defined Networking (SDN) has been envisioned as a way to reduce the
complexity of network configuration and management, initially focused on wired net-
works. The main approach to SDN is OpenFlow1, which focus on wired networks.

SDN for WSN imposes different challenges and requirements, but provides sev-
eral opportunities. Among the challenges we highlight limited resources of WSN nodes:
energy, processing, memory, and communication. Requirements are related to the appli-
cations characteristics (e.g. data frequency and size), as well to the nodes behavior due to
duty-cycles, operating systems and programming approach. On the other hand, opportu-
nities provided by SDN include: to improve resource reuse, to implement node retasking,
node and network management, as well as to enable experiments with new protocols, and
to ease transition to standard protocols for deployed networks in WSN and Internet of
Things context [de Oliveira et al. 2015].

The main proposals in the literature concerning SDN for WSN are:
Flow-Sensor [Mahmud and Rahmani 2011], Sensor OpenFlow [Luo et al. 2012] and
SDWN [Costanzo et al. 2012]. Flow-Sensor [Mahmud and Rahmani 2011] proposes sen-
sor nodes with the main features of OpenFlow. Sensor OpenFlow and SDWN propose a
clear separation between data plane and control plane, a centrally controlled communica-
tion protocol between these two planes and some data plane features.

1https://www.opennetworking.org/sdn-resources/openflow/

https://www.opennetworking.org/sdn-resources/openflow/


Gante et al. [Gante et al. 2014] propose a framework to apply SDN to WSN man-
agement. Besides the benefits highlighted by previous works, authors include accurate
localization and topology discovery as advantages of SDN usage in WSN. The SDN con-
troller should be implemented as part of the WSN sink.

TinySDN [de Oliveira et al. 2014] is a flow-ID-based approach that improves on
previous work by addressing the use of multiple SDN controllers and by discussing com-
mon WSN characteristics, such as (i) in-band control, opposed to SDN implementation
in wired networks that can leverage from out-band control; (ii) higher communication
latency; (iii) smaller link layer frames; and (iv) limited energy supply. Furthermore, the
paper describes the protocol for communication between controllers and WSN nodes, and
discuss implementation issues and approaches for TinyOS [Hill et al. 2000].

SDN-WISE [Galluccio et al. 2015] defines simple mechanisms for the definition
and handling of the Flow Table that make it stateful, pursuing two goals: (i) to reduce the
amount of information exchanged between sensor nodes and the SDN network controller,
and (ii) to make sensor nodes programmable as finite state machines, so enabling them to
run operations that cannot be supported by stateless solutions.

Given the lack of available SDN implementations for TinyOS, a widely used WSN
operating system, we present TinySDN tool. It enables the SDN paradigm, making testing
new protocols easier and providing multiple controllers for software-defined WSN. Each
sensor node is composed of an SDN switch and an end-user device, which we call SDN-
enabled sensor node. The control plane is programmed through a central component,
which we call SDN controller node, thus centralizing the control plane of the WSN.

2. The TinySDN Tool
This section presents the TinySDN architecture overview by describing its components
and protocols.

Figure 1 depicts the two TinySDN types of nodes: SDN-enabled sensor node and
SDN controller node. Each SDN-enabled sensor node, where data plane components are
installed, connects through multi-hop wireless communication to an SDN controller node,
where the control plane logic is executed, allowing the interaction between the two planes.

Figure 1. TinySDN Architecture Components [de Oliveira et al. 2014]

SDN-enabled sensor node is the component that runs on sensor motes, pro-
viding the forwading service to applications as a network protocol. As discussed



in [Luo et al. 2012], end devices are considered peripheral to SDN and hence out of the
scope of OpenFlow, the main SDN project nowadays. On the other hand, sensor nodes
behave like end devices by generating data packets to transmit sensed data, in addition to
merely forwarding data as SDN switches do. Thus, SDN-enabled sensor node is a type of
node that plays both roles: SDN switch and SDN end device.

SDN Controller Node is the node (or nodes in case of multiple controllers) that
performs SDN controller tasks, i.e., executes the control plane: keep a network topology
view, and apply definitions of SDN applications by creating and managing network flows
using the specific protocol described in [de Oliveira et al. 2014]. Each SDN-enabled sen-
sor node must find an SDN controller node to assign and then start to send network topol-
ogy information and request flow specifications when necessary.

Next, we describe the specification of flows and actions protocol, the two types of
nodes, as well the procedures to SDN-enabled sensor nodes find an SDN controller node
and to establish communication with it, and to collect network topology information.

2.1. SDN-enabled Sensor Node
As shown in Figure 1 (left), SDN-enabled sensor node is composed of three parts: Ac-
tiveMessageC, TinySdnP, and TinyOS Application.

The ActiveMessageC is a TinyOS component that manages and provides program-
ming interfaces to interact with the radio module of the sensor node, which comprehends
the functions of link and physical layers. It is used by TinySDN to perform all tasks re-
lated to medium access and wireless communication, such as link quality estimation and
control/data packet sending/receiving.

The TinySdnP is the main component of TinySDN, which is responsible for check-
ing if a received packet matches a flow in the flow table and then perform the related
action, or otherwise sends a flow request to an SDN controller node. Thus it is responsible
for performing flow table update when receiving a flow setup response.

The TinyOS Application part is the equivalent to end-user device; it generates data
packets and then places them on the network using the programming interface provided
by the TinySDN component. It should be written by the network programmer, according
to the WSN application, but we provide an example of this.

2.1.1. Finding a Controller and Establishing Communication with It

The first task of an SDN-enabled Sensor Node at network startup is to find an SDN Con-
troller Node and establish communication with it in order to send control packets. For this,
TinySDN employs the collection tree protocol (CTP) [Gnawali et al. 2009] as underlying
protocol. In addition to being a widely used protocol in TinyOS-based applications, we
selected CTP because of two features:

• Hardware independence – it adopts as metric the ETX value given by TinyOS
Four-Bit Link Estimator Component [Fonseca et al. 2007], a software component
that estimates the link quality between single-hop neighbors from the amount de-
livered or lost messages instead of using the traditional received signal strength
indication (RSSI), a specific and hardware-dependent feature.



• Multiple SDN controllers – it uses a tree routing to deliver data through the
network to a sink node, named root. Each node unconsciously adopts a root by
sending data through the route with the lowest ETX sum. Thus, when multiple
roots are announced each node adopts the root with best ETX without being aware
that there is more than one of them, which builds a collection tree for each root.

2.1.2. Network Topology Information Collection

Network topology information collection is an important feature of TinySDN that enables
the SDN controller node to build a view of the network by receiving information about
sensor nodes and wireless links between them. It consists in each SDN-enabled sensor
node recognizing its neighbors and measuring the quality of links with them, and then
sending this information to the SDN controller node through the CTP route.

In order to recognize the neighborhood SDN-enabled sensor nodes uses the Four-
Bit Link Estimator broadcast beacon packet and wait for responses. Upon receiving
responses, each response sender is added to the neighbor table including the link
quality metric (ETX). To allow us to obtain the neighbor table we needed to modify the
Link Estimator interface and add a command as well.

Table 1 contains an example of neighbor table. The Neighbor Id column
contains neighbors TinyOS node id (network node address) and the Link Quality
column contains neighborhood measured link quality to correspondent neighbor. A lower
ETX value means better quality, and infinity means that link was not sufficiently evaluated
or the link is not available at the moment.

Table 1. Neighbor Table example.

Neighbor Id Link Quality (ETX)
3 10
5 50
9 ∞

2.1.3. Provided Programming Interfaces

The TinySdnP component provides to TinyOS application programmer two main inter-
faces:

• AMSend – it is an interface that enables sending data through the TinySDN tool
protocol by calling the send command function, which receives three parameters:
data flow id that identifies the flow to be used, a pointer to the message
packet to be sent, and packet length. Furthermore, when instantiating this
interface, it is mandatory to implement the send done event, which handles
results (callbacks) of send command calls.
• Receive – it is an interface that enables receiving data through the TinySDN tool

protocol by handling the packet reception event in a callback function implemen-
tation. This receive event implementation receives from the lower software lay-



ers the following parameters: received packet, a pointer to the packet’s
payload, and packet length.

2.2. SDN Controller Node
As observed in Figure 1 (right), it is composed of two different modules to be installed in
different devices: sensor mote module and controller server module, described below.

• Sensor mote module: this module, which runs on a sensor mote, is responsi-
ble for communicating with SDN-enabled sensor node using ActiveMessageC. It
uses SerialActiveMessageC to forward received messages from network to the
controller server module and to forward messages from it to the network. The
TinySdnControllerC part adapts messages and manages this communication.
• Controller server module: module that concentrates the control plane logic, i.e.,

keep a network topology view, hosts controller applications and apply definitions
of it by creating and managing network flows. This module should run over a
device with more resources that a sensor mote, such as a credit-card-sized com-
puter running a Linux distribution, a laptop, a desktop or even a server. TinySDN
defines the interfaces to be used in order to interact with the sensor mote module,
and we provide a use case as a simple controller application, but more elaborated
scenarios and applications could be defined by the network programmer.

2.3. Specification of Flows and Actions
A flow and its actions are a set of instructions used by the SDN controller node to program
SDN-enabled sensor nodes behavior by sending flow setup packets that are translated
into entries on flow tables. Thus, SDN-enabled sensor nodes are responsible for
classifying packets in different flows and performing its corresponding actions.

TinySDN includes specification of two types of flows: control flow and data flow.

Data flows are used to forward data packet generated by applications through the
sensor network. Three data flow actions are specified in TinySDN:

• Forward – classified data packet should be forwarded to a next hop sensor node
specified in the action parameter field.
• Receive – classified data packet should be forwarded to application layer, i.e.,

delivered to the application.
• Drop – classified data packet should be dropped.

Data flows are specified as entries in the data flow table, where each entry
is composed of four fields: Flow ID, field that identifies the flows and is used for packet
classification; Action, which specifies the action to be performed; Action Parameter, field
that contains a specific value related to action (e.g., in case of “Forward” action it specifies
the next hop node id); and Count, field incremented when packets are matched to the flow
entry, providing statistics. Table 2 (left) contains a data flow table example.

Control flows are used to forward control packets from the SDN controller node
to SDN-enabled sensor nodes, i.e., it is just used to establish downward routes to control
packets, since upward routes (from controller to sensor nodes) establishment is performed
by CTP. Control flow entries have a unique and default action: forward; it is because only
the SDN controller node generates control packets and the control flow identification is
the node id (or address). A control flow table example is presented in Table 2 (right), it
includes two fields: destination node id and next hop node id.



Table 2. Data Flow Table and Control Flow Table examples.

Flow ID Action Action Count
Parameter

2 Forward 5 2
9 Receive - 5
11 Drop - 2
34 Forward 10 50

Destination Next Hop
Node Id Node Id

5 5
10 5
13 5
15 3

3. Demo Proposal

The proposed demo will depict a WSN application that senses and transmits such data
to a sink periodically (every 2 seconds) using TinySDN as communication protocol. Its
purpose is to provide an overview of the TinySDN main features, focusing on the flow
creation process and the use of such flows to deliver data from source sensor nodes to
destination nodes. Therefore, the demo is designed to enable the visualization of all
network events related to those two tasks.

To achieve the goal we use COOJA [Osterlind et al. 2006]. COOJA is a cross-
level sensor network simulator that adopts a hybrid approach being able to simulate the
network level through the environment implemented in Java, and to emulate the operating
system level by running native sensor node program integrating it with simulated network
environment using the Java Native Interface. Since COOJA runs cross-compiled bina-
ries for the TelosB2 mote by employng the TI MSP430 emulator in its environment, it is
enabled to emulate/simulate TinyOS applications. By adopting an emulation/simulation
environment, the demonstration is not susceptible to uncontrolled interference. Further-
more, COOJA provide a graphical user interface and features to capture and visualize
mote output and network messages, such as beacon, control, and data packets.

In the demonstration, we adopt two topologies: grid topology (or mesh), which is
very common in WSN application and illustrates a network with medium to high density;
and string topology to illustrate a low-density network. The flows setup are executed
reactively for both types, data flows and control flows, as depicted in Figure 2.

Figure 2. Reactive flow setup

2http://www.memsic.com/userfiles/files/Datasheets/WSN/6020-0094-02_
B_TELOSB.pdf

http://www.memsic.com/userfiles/files/Datasheets/WSN/6020-0094-02_B_TELOSB.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/6020-0094-02_B_TELOSB.pdf


Figure 3. WSN topologies for demonstration

Once the control messages are exchanged, nodes will be able to send data to the
sink. As depicted in Figure 3, the sensor nodes whose node id range from 1 to 5 are de-
ployed with TinySDN, becoming SDN-enabled sensor nodes. In this demo they generate
rules requests and perform the forwarding task according to the Controller instructions.
Additionally, the nodes whose node id are 3, 4 or 5 transmit a counter (simulating data
sensed). The node that node id = 1 is set as the data sink. A small number of nodes was
selected in order to allow one to follow and understand the messages exchanged and dis-
played by COOJA. We could also increase the number of nodes to demonstrate TinySDN
working with larger networks.

4. Used Resources, Source Code and Documentation Availability
TinySDN was implemented based on TinyOS3 and its components, which we highlight:
the collection tree protocol and the 4-bit Link Estimator. Thus, the TinyOS toolchain,
including the build system, is a requirement to compile our tool.

We used TelosB mote as a platform during the development process and for the
validation tests. In theory, TinySDN can run on any TinyOS-supported target hardware;
however, additional tests should be performed for a reliable deployment based on other
platforms. Also, we used COOJA to perform network environment tests.

TinySDN tool source code and the related documentation are available at http:
//www.larc.usp.br/˜cbmargi/TinySDN/.

5. Considerations and Future Work
We introduced TinySDN, a tool designed to enable the TinyOS compatible platforms to
Software-Defined Networking and allows the use of multiple controllers. Among the main
benefits of using SDN paradigm in WSN scenarios, we highlight easier network protocol
development and its hypothesis testing, as well as wireless sensor network management.

Currently, we are developing a controller with more functionalities in order to
replace the current standalone controller. We also expect contributions from the commu-
nity interested in improving the tool. Another future work topic is to extend matching
rules by adding flexible bit masking capability, which enables interoperability with other
protocols, but it implies a higher cost of communication and memory usage.

Acknowledgment
This work is funded by São Paulo Research Foundation (FAPESP) under grants
#2013/15417-4 and #2014/06479-9. Cı́ntia Borges Margi is supported by CNPq research
fellowship #307304/2015-9. The authors would like to thank the Laboratory of Computer
Networks and Architecture of USP for providing the necessary infrastructure.

3Our implementation is based on the most recent released version of TinyOS (2.1.2), released on August
20, 2012. More information can be found at http://www.tinyos.net.

http://www.larc.usp.br/~cbmargi/TinySDN/
http://www.larc.usp.br/~cbmargi/TinySDN/
http://www.tinyos.net


References
[Costanzo et al. 2012] Costanzo, S., Galluccio, L., Morabito, G., and Palazzo, S. (2012).

Software defined wireless networks: Unbridling sdns. In Proceedings of the 2012
European Workshop on Software Defined Networking, EWSDN ’12, pages 1–6, Wash-
ington, DC, USA. IEEE Computer Society.

[Culler et al. 2004] Culler, D., Estrin, D., and Srivastava, M. (2004). Overview of sensor
networks. Computer Magazine, 37(8):41–49.

[de Oliveira et al. 2015] de Oliveira, B. T., Alves, R. C. A., and Margi, C. B. (2015).
Software-defined wireless sensor networks and internet of things standardization syn-
ergism. In Standards for Communications and Networking (CSCN), 2015 IEEE Con-
ference on, pages 60–65.

[de Oliveira et al. 2014] de Oliveira, B. T., Margi, C. B., and Gabriel, L. B. (2014).
TinySDN: Enabling multiple controllers for software-defined wireless sensor net-
works. In Communications (LATINCOM), 2014 IEEE Latin-America Conference on,
pages 1–6.

[Fonseca et al. 2007] Fonseca, R., Gnawali, O., Jamieson, K., and Levis, P. (2007). Four
bit wireless link estimation. In Proceedings of the Sixth Workshop on Hot Topics in
Networks (HotNets VI).

[Galluccio et al. 2015] Galluccio, L., Milardo, S., Morabito, G., and Palazzo, S. (2015).
SDN-WISE: Design, prototyping and experimentation of a stateful sdn solution for
wireless sensor networks. In Computer Communications (INFOCOM), 2015 IEEE
Conference on, pages 513–521.

[Gante et al. 2014] Gante, A. D., Aslan, M., and Matrawy, A. (2014). Smart wireless sen-
sor network management based on software-defined networking. In Communications
(QBSC), 2014 27th Biennial Symposium on, pages 71–75.

[Gnawali et al. 2009] Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., and Levis, P.
(2009). Collection tree protocol. In Proceedings of the 7th ACM Conference on Em-
bedded Networked Sensor Systems, SenSys ’09, pages 1–14. ACM.

[Hill et al. 2000] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K.
(2000). System architecture directions for networked sensors. SIGPLAN Notices,
35(11):93–104.

[Luo et al. 2012] Luo, T., Tan, H.-P., and Quek, T. Q. S. (2012). Sensor openflow: En-
abling software-defined wireless sensor networks. IEEE Communications Letters,
16(11):1896–1899.

[Mahmud and Rahmani 2011] Mahmud, A. and Rahmani, R. (2011). Exploitation of open-
flow in wireless sensor networks. In Computer Science and Network Technology (ICC-
SNT), 2011 International Conference on, volume 1, pages 594–600.

[Osterlind et al. 2006] Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., and Voigt, T.
(2006). Cross-level sensor network simulation with cooja. In Local Computer Net-
works, Proceedings 2006 31st IEEE Conference on, pages 641–648.


	Introduction
	The TinySDN Tool
	SDN-enabled Sensor Node
	Finding a Controller and Establishing Communication with It
	Network Topology Information Collection
	Provided Programming Interfaces

	SDN Controller Node
	Specification of Flows and Actions

	Demo Proposal
	Used Resources, Source Code and Documentation Availability
	Considerations and Future Work

