
SCSimulator:
An Open Source, Scalable Smart City Simulator∗

Eduardo Felipe Zambom Santana1,2, Daniel Macêdo Bastista1, Fabio Kon1,
Dejan S. Milojicic3

1Department of Computer Science - University of São Paulo

2School of Engineering and Technology - Anhembi Morumbi University

3HP Laboratories - Palo Alto

{efzambom,batista,kon}@ime.usp.br,dejan.milojicic@hpe.com

Abstract. Smart Cities, i.e., cities enhanced with a technological infrastructure
that enables a more intelligent use and management of its resources, are cur-
rently seen as a powerful way of improving the quality of life of its citizens.
Smart city platforms tailored at metropolises will be intrinsically very-large-
scale systems; designing and developing such systems will be a daunting task.
Also, deploying an infrastructure to test smart city systems is challenging due to
costs, risks, and political difficulties. Therefore, being able to simulate the exe-
cution of smart city scenarios would be extremely beneficial for the advancement
of the field. This paper presents a new open-source, large-scale smart city sim-
ulator capable of simulating different smart city scenarios and its performance
and usability are also discussed.

1. Introduction

Since 2009, most of the world population is living in cities [United Nations 2009] and cur-
rent resources and infrastructure are hardly enough to cope with the increasing demand
generated by population growth and geographic concentration [Caragliu et al. 2011].
Thus, making cities smarter can help optimize resource and infrastructure utilization in a
more sustainable way. However, deploying the infrastructure to test Smart City systems
will be a considerable problem due to costs, risks, and political difficulties.

There are already a few Smart City experimental testbeds such as SmartSantander
[Jose et al. 2013], with 20 thousand sensors, and Padova Smart City [Zanella et al. 2014],
with 3 thousand sensors. However, a Smart City has more components that are compli-
cated to deploy in a testbed such as Smart Buildings, Smart Grids, and Vehicular Ah-Doc
Networks (VANET). Another problem is that the current testbeds are deployed in small
to medium cities. Deploying a sensor network in a huge city such as São Paulo, with 11
million inhabitants, is a daunting task.

An alternative to support large-scale tests and experiments is the use of simula-
tors. The very large amount of actors in a Smart City environment (e.g., consider the 8
million cars and 11 million people in the city of São Paulo) requires a very-large-scale

∗SCSimulator code, videos, and documentation are available in its page:
https://github.com/ezambomsantana/smart-city-simulator

https://github.com/ezambomsantana/smart-city-simulator

simulator. To be able to simulate such huge scenarios, we are developing SCSimulator to
support tests of many Smart City complex scenarios such as traffic, energy, and disaster
management. SCSimulator will certainly be very useful for many stakeholders such as
city administrators, smart city software developers, and operators of city systems.

This paper is organized as follows. Section 2 presents related work. Section 3
describes the simulator functional and non-functional requirements. Section 4 presents
the architecture and implementation of SCSimulator. Section 5 presents the SCSimulator
performance and usability evaluation. Finally, Section 6 points out our conclusions and
future work.

2. Related Work

In our literature and Web searches for Smart City simulators, we did not find any simulator
that is capable of simulating large-scale and complex scenarios with multiple actors such
as cars, buildings, people, and sensors. We found some specific simulators tailored at
specific domains such as Smart Grids, VANETs, and car traffic, which we describe below.

DEUS (Discrete-Event Universal Simulator) is a discrete-event general pur-
pose simulator, which was extended to simulate a Vehicular Ad-Hoc Network (VANET)
[Picone et al. 2012]. In this Java-based, open-source simulator, it is possible to extend
the base Node and Event model to implement specific actors to simulate entities such as
cars, buildings, people, and sensors. Due to its architecture and non-parallel Java imple-
mentation, its scalability is weak, which was confirmed by experiments with almost 10
thousand nodes that we carried out.

Veins is a VANET simulator [Darus and Bakar 2013] integrated with OM-
NET++1, a well-known discrete-event network simulator, and SUMO (Simulation of Ur-
ban Mobility)2, a traffic simulator. In Veins, it is possible to simulate traffic scenarios such
as accidents and traffic jams. In our experience with it, it was difficult for us to understand
its code and architecture and running it in parallel mode was not trivial.

Siafu is a Java agent-based, open-source simulator [Europe 2007] used to simu-
late mobile events in a city. The simulator has a user interface to visualize simulation data
and can export data sets. In Siafu, the agent creation is manual, so it is more appropriate
for small, simple scenarios that can be visualized via a simple graphical interface.

3. Requirements

In this section, we present the functional and non-functional requirements that a Smart
City simulator must handle.

3.1. Functional Requirements

To find the functional requirements for the initial version of our SCSimulator, we re-
viewed the literature on smart cities domains [Jose et al. 2013, Zanella et al. 2014]. We
then selected the three most commonly explored domains in the scientific literature, which
include the scenarios and actors described in the following.

1OMNET++ - https://omnetpp.org
2SUMO - http://sumo.dlr.de

• Traffic: It should be possible to simulate multiple traffic scenarios such as the
impact of improving the quality of public transportation, the cause and effects of
traffic jams, and the best routes for public transport systems. The main actors of
these scenarios are vehicles, people, traffic lights, and flow sensors.

• Resource Usage and Distribution: In a Smart City, it is possible to manage the
use of city resources such as water and electricity. It is possible to measure the
amount of these resources at many levels such as buildings, streets, and neighbor-
hoods. It should be possible to simulate the amount of water and electricity used
by buildings as well as how these resources are distributed across the city. The
main actors of these scenarios are Smart Buildings, Sensors, and Energy Stations.

• Waste Management: Many authors cite the management of waste services in the
city as an important Smart City domain. It should be possible to simulate the use
of a sensor network to notify when trash cans are full, visualization and control
of trash vehicles, and prediction of when waste disposals will be full with the
growth of population. The main actors of these scenarios are buildings (generate
and receive trash), vehicles (trash truck), and sensors.

3.2. Non-Functional Requirements

The most important non-functional requirements necessary to implement a Smart City
simulator are (1) enabling ease of use of the simulator and (2) the execution of very large
simulations. Thus, the main non-functional requirements are:

• Scalability: To simulate Smart City scenarios, it will be necessary to manage
millions of actors such as cars, people, buildings, and sensors. Therefore, the
simulator scenarios have to scale from hundreds to millions of actors. To achieve
this, distributed and/or parallel simulations will be mandatory.

• Usability: The simulator has to allow easy description of the simulated scenarios,
enabling people that do not know the internal implementation of the simulator
to develop scenarios with little effort. Thus, the programming model has to be
intuitive and independent of the internal implementation of the simulator.

• Extensibility: It is unlikely that a simulator will provide all required features
for Smart City simulations. The simulator has to be easily extensible, offering
simple mechanisms for implementing new actors and changing their behavior, for
implementing new metrics as well changing the behavior of the simulator itself.
So, it is important not only that the simulator be open source but also that it is well
documented and is implemented with good quality, extensible code.

4. SCSimulator
The goal of SCSimulator is to meet all the requirements stated in the previous section.
To achieve that, our approach has been to reuse as much good quality code as we can.
Thus, we based the project on an open-source, large-scale, discrete-event simulator called
Sim-Diasca (Simulation of Discrete Systems of All Scales) [Song et al. 2011] developed
in France by the EDF energy company.

Sim-Diasca is a general purpose simulator that has the goal of enabling very large-
scale simulations. This simulator is implemented in Erlang, a functional language that fa-
cilitates the implementation of massively parallel and distributed applications. Moreover,

Sim-Diasca has a simple programming model enabling fast development of simulation
scenarios. Our experiments with Sim-Diasca demonstrated that it scales much better and
is much easier to use and extend that the other simulators mentioned in Section 2

Figure 1 presents the simulator architecture. The bottom layer is the Sim-Diasca
simulator, responsible for the discrete-event activities such as Time Management, Ran-
dom Number Generation, Deployment Management, and the Base Actor Models. The
middle layer is the Smart-City Model we developed as part of our research, which imple-
ments the required actors for Smart City simulations such as vehicles, people, and sensors.
The top layer comprises the scenarios that are implemented using the Smart City model.

Figure 1. SCSimulator Architecture

With the SCSimulator, there are two ways to visualize the results of the simulation.
First, it is possible to associate Probes with each actor and, anytime in the simulation, the
actor sends data about its state to its probe. At the end of the simulation, a file with all the
values passed to a probe is created. The simulator can also generate graphs with probe
values over simulation virtual time. Figure 2 shows an example of a chart with the values
of the probe of a sensor actor.

The second way to visualize the results of the simulation is via an animated GUI
based on the GoogleMaps API. In this case, it is possible to visualize data gathered from
the simulation while the simulation is running. Figure 3 shows an example of the simula-
tion map, showing a simple simulation with a few dozen cars, buses, sensors, and traffic
lights.

5. Simulator Evaluation

In this section, We compared SCSimulator with the three other simulators presented in
Section 2. We compared three aspects of the simulators: Scalability, Programming Model,
and Output.

Figure 2. Probe generated data

Figure 3. Animated Visualization with the SCSimulator

5.1. Scalability

To evaluate the scalability, we developed a scenario with some actors in SCSimulator.
The initial configuration of the scenario had four buildings, four sensors, and three bus
terminals. Cars came out of the buildings at a certain rate and buses left the terminals at
another rate. We executed the simulation twice, the first with 500,000 simulated clock
ticks and the second with 10 million simulated clock ticks. The first simulation took
approximately 2,500 seconds and the second 100,000 seconds. To run the simulations,
we used a machine with AMD FX6300 processor with 6 cores and 10 GB of memory
running the GNU/Linux (Fedora 21) operating system.

Figure 4 shows the number of actors created during both simulations. The first
simulation started with 6 actors and finished with 896. The second simulation also started
with 6 actors and finished with 18128. The figure shows that the number of actors grew
almost linearly with wall-clock time, indicating that the simulator could handle the load
easily up to 18,000 actors and 10 million simulated clock ticks.

Figure 4. Number of actors over time

Figure 5. Computational resources used in the simulation over time

Figure 5 shows the resource consumption of both simulations. In the first simu-
lation, the results show that resource usage almost did not change across the simulation.
With 6 actors, the Erlang VM used 0.8% of the machine memory; with almost 900 actors,
the amount of memory used increased to 2%. CPU usage also did not change very much
over the simulation time; the chart shows that the average of the usage was almost the
same during all the simulation. In the second simulation, the amount of memory occu-
pied by the Erlang process also started in 0.6% and finished in 15.6%. The amount of
memory used by the other processes of the machine increased almost at the same rate
of the Erlang VM in both simulations. This occurred because creating an Erlang thread
needs an OS action, and some processes create a file to write the values of the simulation.

These results show that the CPU is the bottleneck for the simulations up to the
number of actors we experimented with, pointing to the necessity of parallelizing the
execution of the simulation in more cores and/or machines.

We developed a similar simulation in DEUS and Siafu and executed on the same
machine. DEUS stopped working with 7320 actors because of an out of memory error. In

Siafu we created a simulation with 384 actors but, as said in Section 2 it is hard to create a
large scenario. These two simulators only execute sequentially. We did not present results
obtained with Veins simulator because the simulator does not export the current number
of actors in the simulation, but we could not create a very large simulation.

5.2. Programming Model

The programming model is important to evaluate the extensibility and usability of the
simulator. The SCSimulator and DEUS have a very similar programming model. Both
provide a base class (Actor in Sim-Diasca and Node in DEUS) that developers can extend
to implement the simulation actors. The Siafu programming model is a little different,
and the programmer has to understand all the code of the simulator. To create a traffic
simulation in Veins no code is required, but if it is necessary to add new components to
the simulator, it is necessary to change OMNET++ and SUMO and its communication.
Therefore, SCSimulator and DEUS seem to be more easily extensible than Siafu and
Veins.

To verify usability, it is important to analyze how to create the Smart City scenar-
ios. In SCSimulator, an Erlang code describing the initial configuration of the simulation
is required to define a scenario. Listing 1 presents an example of how to define the sce-
nario actors. In the listing, a traffic light and a sensor actor are defined.

c l a s s A c t o r : c r e a t e i n i t i a l a c t o r (c l a s s T r a f f i c L i g h t ,
[

TFNAME=” t r a f f i c l i g h t 1 ” ,
TFLAT=−23.562831 ,
TFLONG=−46.656866 ,
TFTIME=10

]) ,

c l a s s A c t o r : c r e a t e i n i t i a l a c t o r (c l a s s S e n s o r ,
[

SName1=” s e n s o r 1 ” ,
SLa t1 =−23.570813 ,
SLong1 =−46.656108 ,
SType1 = ” t e m p e r a t u r e ”

]) ,

Listing 1. SCSimulator Actors Definition

Veins and DEUS have a similar way of defining the scenario using XML files that
describe the initial actors and their corresponding behavior what leads to an additional
overhead for parsing. Siafu has a visual interface to define the scenarios, which is good
and easy to define small simulations, but which makes impractical the creation of large
simulations with a large number of actors.

5.3. Simulation Output

The SCSimulator has the two outputs already presented: the animated visualization based
on Google Maps and the Probe datasets and graphs generated by the simulator. DEUS
also uses Google Maps to present the results of the simulations but does not generate
values to be analyzed after the simulation. Veins and Siafu have their own interfaces to
show the simulation results; Siafu also generates datasets with values generated in the
simulation for post-mortem analysis.

6. Conclusions and Future Work
This paper described the development of SCSimulator, a simulator that aims to advance
the state of the art in the integrated simulation of Smart Cities, offering scalability and an
easy programming model. In this first version of the simulator, we implemented actors of
a Smart City environment such as Smart Buildings, Vehicles, and Sensors. The experi-
ments showed that the simulator is scalable, a fundamental requirement to simulate Smart
Cities. Compared to other simulators, SCSimulator is also easy to use and the results of
the simulations can be obtained both by lists of values, graphs or an animated simulation
with a GUI

In our ongoing work, we are experimenting with larger scenarios, going up to
hundreds of thousands of actors; for that, we need to execute the simulator in larger
machines, with more cores so as to better explore the parallelism supported by the Actor
model of the Erlang language. In the long run, we intend to perform simulations with
millions of actors but we anticipate that several challenges and bottlenecks will need to
be resolved before we can achieve that. As future work, we intend to implement other
Smart City scenarios such as disaster management and public transportation. Finally, we
intend to perform a functional evaluation with city officials and public policy makers to
validate the simulated scenarios and improve the simulator usability.

7. Acknowledgments
This work is funded by Hewlett-Packard Brazil.

References
[Caragliu et al. 2011] Caragliu, A., Del Bo, C., and Nijkamp, P. (2011). Smart cities in

europe. Journal of urban technology, 18(2):65–82.

[Darus and Bakar 2013] Darus, M. Y. and Bakar, K. A. (2013). Congestion control algo-
rithm in vanets. World Applied Sciences Journal, 21(7):1057–1061.

[Europe 2007] Europe, N. (2007). Siafu: An open source context simulator.

[Jose et al. 2013] Jose, A. G., Gutiérrez, V., Santana, J. R., Sánchez, L., Sotres, P.,
Casanueva, J., and Muñoz, L. (2013). Smartsantander: A joint service provision facil-
ity and experimentation-oriented testbed, within a smart city environment.

[Picone et al. 2012] Picone, M., Amoretti, M., and Zanichelli, F. (2012). Simulating smart
cities with deus. In Proceedings of the 5th International ICST Conference on Simu-
lation Tools and Techniques, pages 172–177. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering).

[Song et al. 2011] Song, T., Kaleshi, D., Zhou, R., Boudeville, O., Ma, J.-X., Pelletier, A.,
and Haddadi, I. (2011). Performance evaluation of integrated smart energy solutions
through large-scale simulations. In Smart Grid Communications (SmartGridComm),
2011 IEEE International Conference on, pages 37–42.

[United Nations 2009] United Nations (2009). Urban and rural areas 2009.

[Zanella et al. 2014] Zanella, A., Bui, N., Castellani, A., Vangelista, L., and Zorzi, M.
(2014). Internet of things for smart cities. Internet of Things Journal, IEEE, 1(1):22–
32.

	Introduction
	Related Work
	Requirements
	Functional Requirements
	Non-Functional Requirements

	SCSimulator
	Simulator Evaluation
	Scalability
	Programming Model
	Simulation Output

	Conclusions and Future Work
	Acknowledgments

